In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 2: Corrosion in water

C. A. Stitt, C. Paraskevoulakos, A. Banos, N. J. Harker, K. R. Hallam, H. Pullin, A. Davenport, S. Street, T. B. Scott - Interface Analysis Centre, H. H. Wills Physics Laboratory, European Synchrotron Radiation Facility, School of Metallurgy and Materials, University of Birmingham,

To reflect potential conditions in a geological disposal facility, uranium was encapsulated in grout and submersed in de-ionised water for time periods between 2–47 weeks. Synchrotron X-ray Powder Diffraction and X-ray Tomography were used to identify the dominant corrosion products and measure their dimensions. Uranium dioxide was observed as the dominant corrosion product and time dependent thickness measurements were used to calculate oxidation rates. The effectiveness of physical and chemical grout properties to uranium corrosion and mobilisation is discussed and Inductively Coupled Plasma Mass Spectrometry was used to measure 238U(aq) content in the residual water of several samples.

How Amira-Avizo Software is used

Data Analysis WorkbeNch (DAWN) software was used to view and reconstruct the XRT images of each sample and Avizo® was used to produce 3D renders of the XRT data using the generate surface module for specific ranges in greyscale (X-ray intensity) representing each examined material.